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Abst rac t  

Generalized graphs represent Hfickel-type and MObius-type polycyclic conjugated 
systems. We show that the number of generalized graphs with different spectra for a 
given parent graph is not larger than 2 N(R) and is equal to 2 N(R) if no two rings are 
equivalent, N(R) being the number of rings (fundamental circuits) in the parent graph. 
We demonstrate that the rule for the stability of generalized graphs, proved in a previuos 
paper, and the information on the relative magnitudes of the effects of individual 
circuits enable one to predict the stabilities of generalized graphs without performing 
numerical calculations. 

1. Introduction 

H[ickel's 4n + 2 rule is one of the most fundamental rules of  chemistry and 
has been widely used by organic chemists [ 1 ]. This rule states that planar monocyclic 
systems containing (4n + 2) n-electrons are stable and exhibit aromaticity, while 
those containing 4n ~-electrons are unstable and exhibit antiaromaticity. This rule 
was extended to polycyclic conjugated systems (the generalized H~ickel rule) [2]. 

Heilbronner presented the fascinating idea that large-ring polyenes might be 
twisted once to give MObius systems, and showed that the stability of  MObius 
annulenes shows an opposite tendency to the stability of  (usual) annulenes [3]. The 
stability of  MObius annulenes obeys the anti-H~ickel rule. This rule was applied to 
cyclic transition states in certain chemical reactions [4]. In the case of  a simple 
HMO approach, a conjugated molecule is represented by a graph in which each 
edge has weight 1 [5]. A MObius annulene is represented by a graph in which one 
edge has weight - 1 ,  indicating the change of  the phase for the overlapping of  
adjacent ~r-orbitals [6]. The MObius concept was extended to polycyclic conjugated 
systems [4,7]. Generalized polycyclic graphs in which each edge has weight 
1 or - 1  represent Htickel and MObius polycyclic conjugated molecules [7]. 

Magnetic properties (London susceptibility, ring current and NMR 
chemical shift) of  cyclic conjugated systems, which have been used as indices for 
aromaticity [8], were proved to obey a rule similar to the HiJckel rule [9]. Further, 
it was shown that the London susceptibilities of  MObius monocyclic systems obey 
a modulo 4 rule which shows an opposite tendency to magnetic susceptibilities of  
conjugated molecules [10]. 
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In a previous paper, we proved the rule for the stability of generalized 
graphs [11]. This rule states that the sign of the contribution of a circuit in a 
generalized (poly)cyclic graph to the thermodynamic stability is determined by the 
type of circuit (H~ckel or MObius) and by the number of vertices in the circuit (see 
table 1). Since generalized graphs represent Htickel-type and MObius-type cyclic 
systems, this rule is valid for HiJckel-type and MObius-type polycyclic systems and 
thus contains the Htickel rule, the generalized H~ckel rule, and the anti-Htickel rule 
as special cases. 

Table 1 

Rule for stability of generalized graphs: (a) number of vertices 
in a circuit; (b) number of vertices in a pair of disjoint circuits 

Types of circuit and Effects of circuit and 
pair of disjoint circuits pair of disjoint circuits 

(a) N(Cj) = 4n Htlckel 
MObius 

N(Cj) = 4n + 2 H~lckel 
MObius 

(b) N(Cj) + N(Ck) = 4n 

N(C]) + N(Ck) = 4n + 2 

destabilize 
stabilize 

stabilize 
destablize 

Hilckel, Hilckel stabilize 
MObius, MObius stabilize 
HUckel, MObius destabilize 

Htlckel, Htlckel destabilize 
MObius, MObius destabilize 
Htlckel, MObius stabilize 

Randi6 and Zimmerman [12] discussed the stabilities of MObius polycyclic 
systems in terms of conjugated circuits [13]. However, they used the assumptions 
that a MObius conjugated circuit of size 4n, M(n), stabilizes MObius systems, that 
one of size 4n + 2, N(n), destabilizes MObius systems, and that the absolute magnitudes 
of M(n) and N(n) decrease with increasing size of the conjugated circuits. In this 
paper, we shall study the stabilities of generalized graphs without such assumptions. 
The aim of the paper is to show that the rule for the stability of generalized graphs 
enables one to predict the stabilities of generalized graphs without performing 
numerical calculations. 

2. Rule for stability of generalized graphs 

The rule for the stability of generalized graphs was proved by applying 
a Coulson integral formula [14] to the topological resonance energy TRE 
theory [15]. This rule holds for any generalized graphs as long as the systems have 
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completely filled bonding and empty antibonding molecular orbitals and no odd- 
membered circuits. In this section, we will explain the meanings of the rule. 

The topological resonance energy TRE is an excellent index for aromaticity 
of a conjugated molecule [15]. A conjugated molecule with positive (or negative) 
TRE value is predicted to be stable (or unstable). The TRE value of a conjugated 
molecule represented by graph G was defined as the difference between the total 
1r-electron energy calculated from the characteristic polynomial P(G;X) and that 
calculated from the reference polynomial R(G;X). The difference arises from the 
presence of circuits in the system because the characteristic polynomial contains the 
contributions of all the Sachs graphs of G, while the reference polynomial contains 
the contributions of the acyclic Sachs graphs only [5, 16]. If the system G has completely 
filled bonding and empty antibonding molecular orbitals, then the TRE value of G 
can also be calculated from the integral expression for TRE [15]: 

TRE = (1/zr) f in [P(G; iX) /R(G; iX) IdX,  (1) 

where i = q-U]. 
For convenience, directed and edge-weighted graphs are studied here instead 

of generalized graphs [11, 17]. The results obtained for directed and edge-weighted 
graphs are of course valid for generalized graphs, because the former graphs contain 
the latter graphs as special cases. 

Let G* be a directed and edge-weighted graph for a given parent graph G. 
This graph G* is obtained by replacing the edge r - s  in G with two directed edges 
with weights given by 

wrs = exp(ivr~) for the edge r--~ s, 

w~ = exp(iv~) for the edge s --~ r. (2) 

We assume that the vr~'s satisfy the condition: 

vsr = - y r s .  (3) 

This assumption ensures that the roots of the characteristic polynomial of G* are 
real numbers. Figure 1 shows a directed and edge-weighted graph for the naphthalene 
graph. 

-i  

Fig. 1. Directed and edge-weighted graph for naphthalene. 
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The weights Wrs have no effect on the coefficients of the reference polynomial 
of any graph, and we thus have: 

R(G*;X) = R(G;X). (4) 

The characteristic polynomial of G* can be expressed in terms of the reference 
polynomials of certain subgraphs for the parent graph G as follows [11, 18]: 

P(G * ; X )  = R (G;X ) -  2 ~ R(G ®Cj ;X )  cos(V(Cj)) 
J 

+ 4~.,~.,R(G® Cj ®Ck ;X)cos(V(Cj))cos(V(Ck))-.... (5) 
j>k 

In eq. (5), V(Cj) is the sum ofvrs over all the edges in the circuit Cj along one direction; 
G ®Cj is the subgraph of G obtained by deleting the circuit Cj and all the edges 
incident to Cj; G ®Cj ®Q: is the subgraph of G obtained by deleting the pair of 
disjoint circuits Cj and C k and all the edges incident to Cj and/or Ck; the first sum 
runs over all the circuits found in G, and the second one over all possible pairs of 
disjoint circuits. Figure 2 shows three subgraphs G e Cj for the benzocyclobutene 
graph. 

C1 G@C 1 GGC 2 C 2 C 3 

Fig. 2. Three circuits in the benzocyclobutene 
graph and subgraphs G ®Cj  for them. 

Introduction of eq. (5) into eq. (1) gives the TRE value of the edge-weighted 
graph G*: 

TRE= (l/z) S lnI1-2~_~A(Cj;iX)+4y~y~B(Cj,Ck;iX)-... IdX, 
-oo j j>k  

(6) 

where 

A(Q;  iX) = [R(G @ Cj; iX)/R(G;iX)]cos(V(Cj)) 

and 

(7) 
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B(Cj, Ck;iX ) = [R(G eCjeCk;iX)/R(G;iX)]cos(V(Cj))cos(V(Ck) ). (8) 

The term A(Cj; iX) represents the contribution of circuit C i to the TRE and the term 
B(Cj, Ck;iX) represents the contribution of the pair of disjoint circuits C i and C k. 

We classified circuits in directed and edge-weighted graphs into two types: 
Htickel-type circuits with a positive value of cos(V(C)) and MObius-type circuits 
with a negative value of cos(V(C)) [11]. For example, the cos(V(C1)) value for circuit 
C1 in the graph shown in fig. 1 is 1, cos(V(C2) ) = cos(V(C3) ) = - 1  and so C 1 is 
H~ickel-typc, C 2 and C 3 are M0bius-type, where C 3 is the sum of the two fundamental 
circuits C 1 and C 2. 

If graph G represents an altemant conjugated polycyclic system with an even 
number of  vertices, then A(Cj;iX) for any circuit in G is a real function of  X and 
has a definite sign for any X. This is true also for B(Cj, Ck; iX) for any pair of  disjoint 
circuits. From eq. (6), it is seen that if A(Cj;iX) is negative (or positive) for any 
X, then the sign of the contribution of circuit Cj to the TRE is positive (or negative) 
and thus graph G is stabilized (or destabilized) by that circuit, and that ifB(C i, Ck; iX) 
is positive (or negative) for any X, then graph G* is stabilized (or destabilized) by 
the pair of disjoint circuits Cj and C k. The sign of A(Cj; iX) (and of B(C i, Ck; iX)) 
is determined by the size and type of the circuit Cj (and of the pair of disjoint 
circuits Cj and Ck). Table 1 shows the signs of A(Cj;iX) and B(C i, Ck;iX). 

3. A property of generalized graphs 

By giving a weight 1 or - 1 to each edge of the graph representing a polycyclic 
conjugated molecule, one can obtain a number of generalized graphs. The number 
of generalized graphs for a given parent graph is 2 N(B), N(B) being the number of 
edges in the graph. For example, we have 29(=512) generalized graphs for the 
benzocyclobutene graph. Figure 3 shows four of them. However, most of them have 

-1 -1 -1 -1 -1 

G1 G2 G3 G4 

Fig. 3. Four generalized graphs for benzocyclobutene. 

the same spectrum or the same set of roots as the characteristic polynomial. Calculations 
show that the two graphs G 1 and G3 in fig. 3 have the same spectrum. However, 
it is not easy to understand this without calculation. The aim of this section is to 
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obtain a simple way of finding generalized graphs with the same spectrum and the 
number of generalized graphs with different spectra for a given parent graph. 

Even if the various vrs values are assigned to G*, these graphs do not always 
have different spectra. From eq. (5), it is seen that weights in the form of eq. (2) 
have no effect on the characteristic polynomials of any acyclic systems. This 
means that any generalized graphs for an acyclic graph have the same spectrum. 
Equation (5) shows that P(G*;X) depends on the V(Cj) values for the circuits only 
(not on the vrs values for individual edges). We showed in a previous paper [19] 
that the V(Cj) values for all the circuits are not independent and that the number 
of independent V(Cj) quantities is equal to the number of fundamental circuits 
(called rings). For instance, in the case of graphs with two fused rings such as 
naphthalene, V(Cj)'s for two fundamental circuits C 1 and C2 are independent 
and V(C3) is equal to V(CI) + V(C2). This result corresponds to the fact that by 
means of a unitary transformation, the adjacency matrix of G* can be transformed 
into the adjacency matrix of a graph in which all cdges except one edge in each 
fundamental circuit in G have weight 1 [20]. Thus, it is seen that P(G*;X) 
depends on the V(Cj) values for the fundamental circuits only. For example, 
it is seen that the graph in fig. 1 and graph G6 in fig. 4 have the same 
spectrum. 

In the case of the generalized graph, the value of cos(V(C)) for any Htickel- 
type circuit is equal to 1 and that for any M0bius-type circuit is equal to -1 .  Thus, 
it follows that the number of generalized graphs with different spectra for a given 
parent graph is determined by the types of fundamental circuits found in the graphs. 
From this, we can obtain the important result that the number of generalized graphs 
with different spectra for a given parent graph is 2 N(R), N(R) being the number of 
fundamental circuits in the parent graph [21]. Generalized graphs can be divided 
into two categories, M0bius-type graphs which contain at least one M0bius-type 
circuit and H~ckel-type graphs which contain no M0bius-type circuit. So, the number 
of M0bius-type generalized graphs with different spectra for a given parent graph 
is 2 N(R) - 1. For example, for the benzocyclobutene graph we can find four generalized 
graphs with different spectra. The four graphs are G8-G11, shown in fig. 4. Table 
2 shows the types of these four generalized graphs and the types of circuits found 
in them. Now it is easily seen that the spectra of G 1, G2, G3 and G4 are equal to 
the spectra of G8, G10, G8 and G l l ,  respectively. 

In the above, we have not considered the equivalence of rings. If a given 
parent graph has equivalent fundamental circuits (rings), then the number of generalized 
graphs with different spectra for the given parent graph is less then 2 N(R). Here, the 
term "equivalent" means that if subgraph G 6) Cj is identical with G e Ck, then the 
two circuits are equivalent. For instance, the number of generalized graphs with 
different spectra for naphthalene is 22 -  1 = 3, because the naphthalene graph G5 
(see fig. 4) has two equivalent rings C 1 and C 2. The three graphs are G5-G7, shown 
in fig. 4. Let G6' be a generalized graph for the naphthalene graph in which 
cos(V(C1)) = - 1 and cos(V(C2) ) = 1. The characteristic polynomial of this graph is 



N. Mizoguchi, Hackel and MSbius cyclic conjugated molecules 331 

G5 G6 G7 

G8 G9 GIO Gll 

G12 G13 G14 

G15 G16 G17 

Fig. 4. Generalized graphs with different spectra for three parent graphs. 

Table 2 

Types of graphs G5-G11 (see fig. 4) and types of circuits 
found in them. Circuit C 3 is the sum of C 1 and C 2 

Type of circuit Type of graph 

Graph C 1 C 2 C 3 

5 HUckel Htlckel Htlckel Htlckel 
6 Htickel M6bius M6bius M6bius 
7 M6bius M6bius Htlckel M6bius 
8 Htlckel HUckel Htlckel Htlckel 
9 M6bius HIlckel M6bius M6bius 

10 Htlckel M6bius M6bius M6bius 
11 M6bius M6bius Htlckel M6bius 
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P(G6";X) = R(G5;X) + 2R(G5 @ C1;X) 

- 2R(G5 ~ C2;X ) + 2R(G5 e Ca;X). (9) 

Since G5® C 1 is identical with G5 @ C 2, the characteristic polynomial of G6' is identical 
with that of G6. Table 2 shows the types of generalized graphs G5-G7 and the 
types of circuits found in them 

Although table 1 shows the effects of individual circuits on stability, the 
results obtained in this section mean that all the circuits found in a generalized 
graph do not independently contribute to the stability of the graph. It should be 
noted that generalized graphs with the same spectrum are different from so-called 
isospectral graphs [22] because the former graphs have the same skeleton but the 
latter graphs do not. The TRE values of isospectral graphs may be different because 
the reference polynomials for these graphs may be different. On the other hand, 
generalized graphs with the same spectrum have the same TRE value because they 
have the same characteristic polynomial and the same reference polynomial. 

4. Stabilities of generalized graphs 

The rule for stability of generalized graphs enables one to predict without 
numerical calculation the signs of the effects of each circuit and each pair of 
disjoint circuits in a generalized graph to the TRE value. So, for generalized graphs 
which contain circuits with the effect of stabilization (or destabilization) only, we 
can directly find from the rule the signs of the TRE values of these graphs. However, 
for generalized graphs which contain both circuit(s) with the effect of stabilization 
and circuits(s) with the effect of destabilization we need information on the relative 
magnitudes of the effects of individual circuits and those of pairs of disjoint circuits. 

Such information is obtained from comparison of the magnitudes of A(Cj;iX) 
and 2B(Cj, Ck;iX ). The factor 2 before B(Cj, Ck;iX) arises from the fact that, as 
seen from eq. (5), B(Cj, Ck;X ) contributes to P(G*,X) in the form of 4B(Cj, Ck;X), 
while A (Cj) does so in the form of 2A(Cj;X). The coefficient of the reference polynomial 
for a graph can be obtained by counting the number of mutually independent edges 
in the graph [5]. Therefore, by counting these numbers for G e C i and G e Cj ® Ck, 
we can estimate the relative magnitudes of A(Cj;iX) and 2B(Cj, Ck;iX ), and thus 
the relative magnitudes of the effects of individual circuits and the effects of pairs 
of disjoint circuits. 

Let us study the stabilities of the generalized graphs shown in fig. 4. 

4.1. GRAPHS G5-G7 

Graph G5 contains three circuits C1, C2 and C3 (= Cl + C2). As seen in the 
previous section, the three generalized graphs with different spectra for the parent 
graph G5 are GS-G7.  The types of the three circuits in the three graphs are shown 
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Table 3 

Effects of circuits in graphs G5-Gl l  (see fig. 4) on 
their stabilities. Circuit C a is the sum of Cland C 2 

Effect of circuit 

Graph C 1 C 2 C 3 

5 stabilize stabilize stablize 
6 stabilize destabilize destabilize 
7 destabilize destabilize stabilize 
8 stabilize destabilize destabilize 
9 destabilize destabilize stabilize 

10 stabilize stabilize stabilize 
11 destabilize stabilize destabilize 

in table 2, and the numbers of  vertices in the three circuits are 6, 6 and 10, 
respectively. Therefore, from the rule for the stability of  generalized graphs we can 
see that the circuits in the three graphs have the effects as shown in table 3. 

From this table, the following results are obtained. Graph G5 is stabilized by 
every circuit found in this graph and thus this graph is very stable. Graph G6 is 
stabilized by C~ but destabilized by C 2 and C a. Since the absolute value ofA(C~;iX) 
is equal to that of  A(C2; iX) and the two circuits C 1 and C 2 in graph G6 belong to 
different types, the effect of circuit C 1 on the stability of  G6 is cancelled by the 
effect of  C 2. Therefore, the stability of  G6 is determined by the effect of  circuit C 3 
only and so G6 is unstable. Graph G7 is stabilized by C a but destabilized by C 1 and 
C 2. So, for the determination of  the sign of  the TRE value of  G7, it is necessary 
to estimate qualitatively the relative magnitudes of  the absolute values of  the A(Cj;iX) 
terms (which are independent of  the type of  circuit). 

By counting disjoint edges in the subgraphs G5@ C 1, G5@ C 2 and G5@ C a, 
we can easily obtain 

R(G5~ C 1;X) = R(G5@ C2;X) = X 4 -  3X 2 + 1 

and 

R(G5@C3;X ) = 1. 

By comparing the coeffcients of  the above polynomials, we find that 

[R(G5@C1;iX)I=IR(G5@C2;iX)I>IR(G5@Ca;iX)I>O for a n y X .  

The above equation, with eq. (7), leads to 

IA(C1;iX)I=IA(C2;iX)I>IA(C3;iX)I for any X. (10) 
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This equation means that the absolute magnitude of the effect of C 1 (or C 2) is 
larger than that of C 3. From this result and table 3, it is seen that G7 is more unstable 
than G6. 

Thus, we have shown that the signs and order of the TRE values of G 5 - G 7  
are predicted to be as follows: 

TRE(G5) > 0 > TRE(G6) > TRE(G7). (11) 

4.2. GRAPHS G8-Gll 

These four graphs, which have three circuits C1, C2 and C 3 (see fig. 3), are 
the generalized graphs with different spectra for the parent graph G8. The types of 
the three circuits in these four graphs are shown in table 2, and the numbers of 
vertices of the three circuits are 6, 4 and 10, respectively. Therefore, from the rule 
for the stability of generalized graphs it follows that the circuits in the four graphs 
have the effects as shown in table 3. 

Table 3 shows that graph G10 is stabilized by all the circuits in this graph, 
and the other three graphs contain circuit(s) with the effect of stabilization and 
circuit(s) with the effect of destabilization at the same time. Thus, it follows that 
G10 has a positive TRE value and is the most stable graph of the four. 

By counting disjoint edges in the subgraphs G8@ C 1, G8 @ C 2 and G8 @ C 3, 
we may easily obtain the reference polynomials of the subgraphs as follows: 

R(G8G~C~;X) = X 2 -  1, 

R(G8@C2;X) = X 4 -  3X2+ 1, 

R(G8@C3;X ) = 1. 

From the above equations, we can obtain: 

IR(G8@C2;iX) I> I R ( G 8 0 C ~ ; i X ) I > I R ( G 8 0 C 3 ; i X ) I  f o r a n y X .  (12) 

The above equation, with eq. (7), leads to 

[ A(C 2; iX) I > I A(C 1; iX) I > [ A (C 3; iX) [ for any X. 

This equation means that the absolute magnitude of the effect of the 4-membered 
circuit C 2 is larger than that of the 6-membered circuit C 1, which in turn is larger 
than that of the 8-membered circuit C 3. From this result and table 3, we can predict 
the order of the stabilities of graphs G 8 - G l l  as follows: 

TRE(GIO) > TRE(Gl l )  > TRE(G8) > TRE(G9). (13) 
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The signs of the TRE values of graphs G8, G9 and G 10 are predicted to be as follows: 

TRE(GIO) > 0 > TRE(G8)  > TRE(G9).  

Unfortunately, from eq. (12) we cannot determine the sign of the TRE value 
of graph G 11. 

4.3. GRAPHS G12-G17  

From the result of the previous section, it is seen that we can find six 
generalized graphs with different spectra for the parent graph G12. The six graphs 
are G 12-G 17. These graphs have six circuits C 1, C 2, C3, 6'4 ( = C1 + C2), C5 (= C2 + C3), 
and C6 ( = C1 + C2 + C3) and a pair of disjoint circuits C 1 and C 3. Table 4 shows 
the signs of the effects of the circuits and the pair of disjoint circuits in the six 
generalized graphs. 

Table 4 

Effects of circuits and a pair of disjoint circuits in graphs G12-G17  
(see fig. 4) on their stabilities. Circuit C 4 is the sum of C 1 and C 2, 
C 5 is the sum o f C  2 and C 3, and C 6 is the sum of C 1, C 2and C 3 

Effects of circuit and pair of disjoint circuits 

Graph C 1 C 2 C 3 

12 stabilize destabilize stabilize 

13 destabilize destabilize stabilize 

14 stabilize stabilize stabilize 

15 destabilize stabilize stabilize 

16 destabilize destabilize destabilize 

17 destabilize stabilize destabilize 

C4 C5 C6 

12 destabilize destabilize destabilize 

13 stabilize destabilize stabilize 

14 stabilize stabilize stabilize 

15 destabilize stabilize destabilize 

16 stabilize stabilize destabilize 

17 destabilize destabilize stabilize 

C 1 + C 3 

stabilize 

destabilize 

stabilize 

destabilize 

stabilize 

stabilize 

Table 4 shows that graph G14 is stabilized by all the circuits and by the pair 
of disjoint circuits found in this graph, and the other five graphs contain both 
circuit(s) with the effect of stabilization and circuit(s) with the effect of destabilization. 
Therefore, it follows that G14 has a positive TRE value and is more stable than any 
of the other graphs. It is also seen from this table that graph G16 has a negative 
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TRE value and is the most unstable graph of the six because it is destabilized by 
all its circuits except C5, and the effect of C 5 is cancelled by the effect of C 4. 

By counting disjoint edges in the subgraphs G12@ Cj, we can obtain 

and 

R(G12® C1;X ) = R(G12® C3;X ) = X 6 -  6X 4 + 9X 2 -  2, (14) 

R(G12® C 2 ; X  ) = X 8 - 6 X  6 + 1 1 X  4 - 6 X  2 + 1, (15) 

R(G12® C4;X) = R(G12@ C5;X ) = X 4 -  3X 2 + 1, 06) 

R(G12®C6;X ) = 1, (17) 

R(GI2®CI®C3;X ) = 1. (18) 

Thus, we see that 

IA(C~;iX) I= IA(C3;iX) I 
> IA(C4;iX) I=IA(Cs;iX )[>[A(C6;iX)[ for anyX,  

I A(C2; iX) I (19) 

and 

IA(C~;iX) I=IA(Cs;iX)I> 21B(C1, Cs;iX)I f o r a n y X .  (20) 

From eqs. (14) and (15), we cannot compare the magnitudes of  IA(C1;iX)[ and 
I A(C2;iX) 1. Equation (19) means that the absolute values of the effects of 
individual circuits decrease with increasing size of the circuit (except for the case 
of the two circuits C 1 and C2). Equation (20) shows that the absolute values of the 
effects of circuits C1 and C 3 are larger than that of the pair of disjoint circuits 
C~ and C 3. 

For complicated graphs such as graphs G 12-G 17, it is convenient to compare 
the stabilities in terms of a function Q(G*;X) defined by 

Q(G*;X ) = -~.~A(Cj ;X )+ 2 ~ . ~  B(Cj, Ck;X ) . . . .  
J j>k 

(21) 

Compare the stabilities of G13 and G15. From table 4, Q(G13;iX), for example, 
can be obtained as follows: 

Q(G13;iX) = -[A(C1;iX)I-IA(C2;iX)[+ IA(Ca;iX) I + I A(C4;iX) I 

- [A(C5;iX) I - IA(C6; iX)  I -  2 IB(C1, Ca;iX) I. 

Thus, we have 
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Q (G 13; iX) - Q (G 15; iX) 

= - 2 [A(C2; iX) I + 2 [ A(C6; iX) I < 0 for any X, 

where we used eqs. (14) and (19). From the above equation and eq. (6), it is seen 
that 

TRE(G13) < TRE(G15). 

Next, compare  the stabilities of  G13 and G16. From table 4, we can obtain 

Q(G13;iX) - Q(G15 ;iX) 

= X  6 +  10X 4 +  1 2 X  2 >  0 for anyX.  

From the above equation and eq. (6), it is seen that 

TRE(G13) > TRE(G16). 

In a similar way, we can obtain 

TRE(G 12) TRE(G 13) 
TRE(G14) > > > TRE(G16). (22) 

TRE(G 15) TRE(G 17) 

We cannot  compare the magnitudes of  TRE(G 12) and TRE(G 15) and the magnitudes 
of  TRE(G 13) and TRE(G 17). In order to do so, we need other information in addition 
to eqs. (14) - (20) .  

Graph G13 has a negative TRE value because the effects of the circuits C 1 
and C 4 are cancelled by those of  C 3 and C 5, respectively, and 

Q (G 13 ; iX) = - I A (C 2; iX) I + I A (C 6; iX) [ - 2 [ B (C 1, C3; iX) [ 

= - X 8 - 6X 6 -  l l X  4 -  6X 2 -  2 < 0 for any X, 

where eqs. (15), (17) and (18) were used. Thus,  we have shown, as for the signs 
of  the TRE values of  graphs G13, G14 and G16, that 

TRE(G14) > 0 > TRE(G13) > TRE(G16). (23) 

It is noteworthy that from eqs. (11), (13) and (22), we can estimate the order 
of  the total zr-electron energies of  these graphs because the generalized graphs for 
a parent graph have the same reference energy (see eq. (4)). 
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Thus far, we have estimated the absolute magnitudes of the effects of individual 
circuits in tcrms of A(Cj; iX) and obtained eqs. (10), (12), (19) and (20) which show 
that the absolute magnitude of A(Cj; iX) decreases with increasing size of the circuit. 
However, this is not always true. Gutman and Polansky [23] evaluated the effects 
of circuits from the value of the integral ~_=IA(Cj;iX) I dX. Numerical calculations 
for C1 and C 2 in graph G12 give: 

S IA(C1;iX)IdX = 0 . 1 2 3  and S I A ( C 2 ; i X ) I d X = 0 . 1 0 3 .  

This result shows that the absolute magnitude of the effect of  6-membered circuit 
C 1 is larger than that of 4-membered circuit C 2. Gutman and Polansky demon- 
strated that the value of the integral ~_..IA(Cj;iX) I dX depends mainly on the 
constant term in IR(G®Cj;iX) I [23]. The above values reflect that the constant 
term in IR(G12®CI;iX) Iis 2 (see eq. (14)), while that in IR(G12®C2;iX) Iis 1 
(see eq. (15)). 

5. Concluding remarks 

We have studied generalized graphs which represent H~ickel-type and MObius- 
type polycyclic conjugated systems. We have shown that the number of generalized 
graphs with different spectra for a given parent graph is 2 N(R) if no two rings are 
equivalent, N(R) being the number of rings (fundamental circuits) in the parent 
graph. By use of the Sachs theorem and the integral expression for TRE, we have 
estimated by hand the relative magnitude of the effects of individual circuits (and 
pairs of disjoint circuits). We demonstrated that the rule for the stability of  generalized 
graphs and the information on the relative magnitudes of the effects of individual 
circuits enable one to predict, without performing numerical calculations, the signs 
and order of  stabilities of generalized graphs for a given parent graph. 

It should be noted that the term A (Cj;X) cannot be used to estimate quantitatively 
the contribution of each circuit to TRE, because TRE depends not only on effects 
of individual circuits but also on collective effects of pairs, triplets, etc. of circuits. 
In order to estimate quantitatively the contribution of each circuit to TRE, the concept 
of circuit resonance energy CE was introduced in two different ways: by Aihara 
[24] and by Gutman and Bosanac [25]. We have recently shown that the CE's defined 
by Aihara strictly obey the Htickel rule and that the CE's of M0bius-type circuits 
also obey 4n + 2 rules [26,27]. 
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